
International Journal of Information Engineering (IJIE)

On Exchanging Ontologies
Christos Tatsiopoulos#1, Basilis Boutsinas#2

#Dept. of Business Administration, University of Patras,GR-26500, Rio, Greece
1ctatsio@gmail.com

2vutsinas@upatras.gr

Abstract-Due to the decentralization in the Semantic Web,
ontologies can be designed and developed by different
communities, using different vocabularies and overlapping
content. In this paper, we present a system for ontology
exchanging between communities. More specifically, the system
updates parts of ontologies, which are considered to be
interesting by its designer, using the knowledge included in
another. Interestingness is detected automatically utilizing a set
of newly proposed measures. Updating is based on a new
ontology mapping technique. Also, to facilitate the comparison,
we present a survey of ontology mapping and merging/alignment
techniques.

Keywords-Information Exchange; Ontology Mapping;
Ontology Merging; Ontology Alignment

I. INTRODUCTION

Ontology engineering which includes designing,
developing, maintaining and sharing ontologies, is an
emerging knowledge engineering process. It allows the
information to be organized into taxonomies of concepts, be
represented by attributes, and to disclose relationships
between concepts, be represented by functions, IS-A relations,
constraints, etc. Ontologies find acceptance in numerous
applications, e.g. information retrieval [40], document
management [28], agent communication [23], finance [17]
and e-commerce [37,49].

Ontologies are imposed by the explosive growth of the
Semantic Web, where they are used to describe the semantics
of the data. They are used for conceptually structuring of data
and for knowledge sharing. Due to the decentralized nature of
both the WWW and the Semantic Web [4,50], it is inevitable
that different communities, i.e. groups of people with similar
interests, within the so-called information society represent
and treat the same basic concepts in different ways. For
example, the basic concept “Person” is treated entirely
different in the medical ontology from that in the business one.
Therefore, ontologies can be designed and developed by
different communities without adopting common standards
for information exchange. On the other hand, the leverage of
synergies of information exchange has been increased by the
deployment of systems for community interaction support.
Many researchers (e.g. [28,29,32,45]) argued that the
commonness of all systems ontologies cannot be guaranteed
(see [51] for a survey of such effort), because it is more
efficient if a smaller community is involved in the process and,
in general, communities can usually not be forced to adopt
common standards.

In this paper we present a system for ontology exchange
between agents, in which ontologies may use different
vocabularies and may have overlapping content. This problem
is important for agent-oriented applications of ontologies,
whenever an agent need to update its knowledge from other
agents. The system is based on detecting interesting parts of

ontologies and then using a new ontology mapping technique,
which is based on association rule mining.

In the rest of the paper, we first describe the technique for
detecting interesting parts of ontologies (Section 2) and the
new ontology mapping technique (Section 3) and then we
present the system architecture (Section 4). Finally, we draw a
conclusion (Section 5).

II. ON DETECTING INTERESTING PARTS OF ONTOLOGIES

Within the proposed system, we consider the problem of
exchanging parts of ontologies but not the whole ontologies,
which is actually related to ontology merging and alignment.
More specifically, we consider the problem of updating an
ontology using the knowledge included in another. However,
the update is performed only for the parts of the first ontology
which are considered interesting by its designer. The
interestingness is decided by the system itself but not the
designer.

Thus, we reduce the problem to automatic detection of the
interesting parts based only on the structure of the ontology
and not on any user input. Of course, the knowledge included
in the interesting parts of the one ontology must be a superset
of knowledge included in the interesting parts of the ontology
to be updated.

To tackle the problem, we define a number of different
measures of interestingness of parts of ontologies. Each such
measure represents different semantics of interestingness.
After the interesting parts have been located in any alignment,
the algorithm proposed in the literature could be applied (see
next subsection) for updating the ontology.

The term "interestingness" was first used in data mining as
a measure of how much interesting an extracted data mining
rule is with respect to a user judgement. "Entropy" and
"support" are such measures of interestingness. There is not
any generally accepted definition of interestingness. In fact,
each of the proposed measures concerns a different aspect of
what "interestingness" in ontologies could mean. Note that the
proposed measures exploit only the structure of the
ontologies， the proposed measures are domain/application
independent.

A. Related Merging/Alignment Techniques

There are some techniques presented in the literature for
ontology merging and alignment. They all consider the
merging or alignment of the entire input ontologies. The key
ideas of any of them could be applied to the alignment of
interesting parts after they have been located

The methodology presented in [20] merges mapped
concepts and then it applies validation heuristics in order to
avoid both structural and content-based inconsistencies. For
instance, it checks: 1) for new superconcepts of a merged

International Journal of Information Engineering (IJIE)

concept, i.e. concepts that were not already superconcepts of
the merged concept in the input ontology, 2) if mutual
disjointness requirements are still satisfied by merged
concepts, as in the input ontologies, 3) if any cycles are
created after merging, 4) if there are any type constraints
violations after merging.

Chimaera [31] is a tool that focuses the attention of the
user in particular portions of the ontology that are
semantically interconnected and in need of repairing or further
merging. More specifically, Chimaera coalesces semantically
identical terms from different ontologies, so that they are
referred to by the same name in the resulting ontology, and
identifies terms that should be related by subsumption,
disjointness, or instance relationships and provide support for
introducing those relationships. After merging, Chimaera
provides support for recognizing logical inconsistencies and
for validating the resulting ontology.

FCA-Merge [45] employs Formal Concept Analysis to
create, in a first phase, mappings between populated
ontologies. It is based on a set of natural language documents.
It represents the set of documents assigned to each inputted
ontology using the vector space model, it generates two
formal concepts out of these sets and it generates a pruned
concept lattice. The merging phase is performed after
processing the formal concepts of the pruned concept lattice.
Each such concept is a candidate for a concept, a relation, or a
new subsumption in the merged ontology. The user has to
interact with the system in order to resolve possible conflicts
and duplicates, but there is automatic support from FCA-
Merge in terms of a query/answering mechanism based on
heuristics. Several cases are examined. For example, two or
more concepts of the source ontologies generate the same
formal concept. This indicates that the concepts should be
merged into one concept in the target ontology. The user is
asked which of the names to retain.

The PROMPT tool [34] is designed to maintain the focus
of users and to provide feedback to the user during mapping
and then during merging or alignment. First PROMPT creates
an initial list of linguistic similarity matches based on class
names. Then, the user triggers an operation which either has
been suggested by PROMPT or by using an ontology-editing
environment. Then, PROMPT performs the operation and it
automatically executes additional changes, generates a list of
suggestions, and determines conflicts. There are specific such
operations for merging/alignment. For example, the operation
“perform a deep copy” includes copying all the parents of a
class down to the root of the hierarchy and all the classes and
slots it refers to. After such operations, conflicts that may
appear could be: 1) name conflicts (more than one frame with
the same name), 2) dangling references (a frame refers to
another frame that does not exist), 3) redundancy in the class
hierarchy (more than one path from a class to a parent other
than root), etc.

Ontomorph [9] is a tool to support the translation of
symbolically represented knowledge into some different form.
It is based on a mixture of syntactic and semantic criteria. It
can be used to support knowledge-based merging tasks, as
well. This is accomplished by finding, at first, semantic
overlaps and then by designing transformations to bring
sources into mutual agreement. Finally, it checks the resulting
knowledge for consistency, uniformity, and non-redundancy.
After checking, the previous steps will be repeated if it is
necessary.

OntoDNA [27] is an automated ontology mapping and
merging tool. It utilizes Formal Concept Analysis to capture
the properties and the inherent structural relationships among
ontological concepts of heterogeneous ontologies. More
specifically, it generates two formal concepts out of one
source and one target ontology. After a pre-linguistic
processing of these formal concepts, certain mapping rules are
applied to reconcile their intents. Thus, the captured structures
of ontological concepts act as background knowledge to
resolve semantic interpretations in the next phase, where
unsupervised clustering techniques, (Self-Organizing Map
and K-means), are used. Finally, the ontological concepts of
the target ontology are updated to the source ontology based
on certain merging rules.

In [44] the alignment problem is reduced to the discovery
of subsumption relations among ontology elements. The
proposed technique computes subsumption relations between
concept pairs of the two input ontologies extracted by a
mapping tool. Thus, concept pairs are represented as feature
vectors of length equal to the number of the distinct properties
of source and target ontologies: properties with equivalent
meaning correspond to the same vector component. Then,
given a pair of concepts, a supervised machine learning
method locates a hypothesis concerning their relation in a
space of hypotheses, which best fits to the training examples,
generalizing beyond them. The training examples for the
learning method are being generated from the target and
source ontologies.

In [5] a semi-automatic merging algorithm is presented,
where users can choose appropriate results from a set of
suggestions. It is based on combining Answer Set
Programming with linguistic background knowledge. The
latter is used to detect correspondences between concepts
based on synonymy while Answer Set Programming
calculates several answer sets which provide merging options
among which the user can choose. To restrict the exponential
number of possible merging solutions to reasonable ones,
there are constraints in the form of intuitive merging rules
which the user can apply.

Finally, a similar problem is that of database schema
integration (e.g. [43]). However, most schema matching and
integration techniques are not adequate for ontology mapping
and merging/alignment due to the not handled differences in
terminology, exhibiting poor results in the case of little
structural similarity, and absence of instances, etc. Despite
the support or the controversy of the statement that ontology
mapping/alignment is similar to database schema
matching/integration [25,36], the proposed measures could be
applied to both of them.

B. The Proposed Interestingness Measures

We propose some measures of interestingness and we
present their definitions. We have investigated several others.
However the proposed ones exhibit significant results during
empirical tests. They are all based on the structure of
ontologies.

The proposed measures are all based on detecting
interesting concepts within ontologies. Then, we consider
interesting parts of an ontology the subgraphs rooted in these
interesting concepts. Thus, the proposed measures assign a
value to each concept representing its interestingness:

rel_cD% Percentage Direct Child Nodes: the number of
nodes which are directly connected to a specific node, as

International Journal of Information Engineering (IJIE)

percentage of the number of nodes in the ontology. Note that
the higher is the value of the measure for a node, the greater is
its interestingness. For example, in ontology shown in Fig. 1,
node oo250 (rel_cD%=10.71%) is more interesting than
oo180 (rel_cD%=0%) or even ooo40 (rel_cD%=7.14%), since
it has more direct child nodes.

rel_cI% Percentage Indirect Child Nodes: the number of
nodes in the subgraph rooted at a specific node, as percentage
of the number of nodes in the ontology. Note that the higher is
the value of the measure for a node, the greater is its
interestingness. For example, node ooo95 (rel_cI%=42.86%)
is more interesting than oo185 (rel_cI%=14.29%), since there
are more nodes in the subgraph rooted at ooo95.

rel_b% Percentage Brother Nodes: the number of Direct
Child Nodes of the father node(s), i.e., of immediate
ancestor(s), of a specific node, as percentage of the number of
nodes in the ontology. Note that the higher the value of the
measure for a node, the greater its interestingness. For
example, node oo250 (rel_b%=7.14%) is more interesting
than node oo180 (rel_b%=3.57%) and node ooo90
(rel_b%=3.57%), since it has more brother nodes having both
oo175 and oo170 as father nodes.

Fig. 1 A test ontology

mdisbr Mean Distance of Brother Nodes: the mean
distance of a specific node from its Brother Nodes. The
distance of two nodes d(x,y) is calculated using the
dissimilarity measure presented in [6]. The dissimilarity
between any two attribute values is represented by the
distance between the corresponding nodes of the tree structure
as defined by the following formula:

d(X,Y)=d1*d2*d3, where

d1=1/fl(X,Y),

d2=Average((l(X)-fl(X,Y))/max(p(X)),

(l(Y)-fl(X,Y))/max(p(Y))) and

d3=p(X,Y)/(max(p(X))+max(p(Y))),

Where X and Y represent any two nodes, fl(X,Y) is the
level of the nearest common father node of X and Y nodes, i.e.
the level of the nearest common predecessor, l(X) is the level
of node X, i.e. the depth of the node, max(p(X)) is the length
of the maximum path starting from the root to a leaf and
containing node X, p(X,Y) is the length of the directed path
(number of edges) connecting X and Y. If there is not a path

connecting X and Y then p(X,Y)=p(X,fl(X,Y))+p(Y,fl(X,Y)).
Also, p(X,X)=0. mdisbr is calculated by the following
algorithm:

for each Brother Node i of node j

 calculate d(X,Y)

 set count += 1

 set dsum += d(X,Y)

return dsum/count

Note that the lower is the value of the measure the greater
is the interestingness. For example, node oo110
(mdisbr=0.003) is more interesting than node oo610
(mdisbr=0.0115), since its father node is located deeper in the
ontology.

nden(k) Network Density of range k: Network Density of
range k of a specific node i is the number of nodes that are
connected to or can be reached from i, via a path of length at
most k, which does not include direction changes. We have
implemented the calculation of the measure dynamically.
Note that the higher is the value of the measure for a node, the
greater is its interestingness. For example, for node oo610
nden(2)=4, since there are 2 ancestor nodes (ooo40,ooo50)
and two successor ones (oo650,oo700). Thus, it is more
interesting than node oo110 (nden(2)=2).

in% Percentage Incoming Paths: the indegree (din(i)) of a
node i, i.e., the number of edges which have i as their end-
node, as percentage of the total incoming and outcoming
paths, i.e., of the indegree plus outdegree of i. Note that the
higher is the value of the measure for a node, the greater is its
interestingness. For example, node ooo90 (in%=66.67%) is
more interesting than node oo250 (in%=40%).

out% Percentage Outcoming Paths: the outdegree (dout(i))
of a node i, i.e., the number of edges which have i as their
start-node, as percentage of the total incoming and outcoming
paths, i.e., of the indegree plus outdegree of i. Note that the
higher is the value of the measure for a node, the greater is its
interestingness. For example, node oo250 (out%=60%) is
more interesting than node ooo90 (out%=33.33%).

n_l(i)% Percentage Level distribution: Level distribution
of a specific node i is the number of nodes belonging to the
level of node i (l(i)), (i.e., the length of the maximum path
(number of edges) from the root to node i), as percentage of
the number of nodes in the ontology. Note that the higher is
the value of the measure for a node, the greater is its
interestingness. For example, there are 4 nodes on the same
level with node oo100 (out%=14.3%) which is more
interesting than node oo250 (out%=10.7%), since there are 3
nodes on its level.

We evaluated the proposed interestingness measures on
both test and real ontologies (e.g. the Gene Ontology
(http://www.geneontology.org/). To evaluate the proposed
measures we used a node ranking with respect to their
interestingness, defined by human experts, i.e. researchers of
the “Institute for the Language Processing – ILSP” in Greece
(www.ilsp.gr). After testing several test ontologies, we can
conclude that rel_cD%, nden(k), out%, and n_l(i)% measures
assigned interestingness in a way that reflects expert's first
choices [47]. Moreover, both the n_l(i)% and the out%
measures discovered additional interesting nodes. Such results
were returned to the experts for additional comments and
most of them were accepted as valid according to expert's

International Journal of Information Engineering (IJIE)

criteria. However, the rest measures have not provided
successful results in a consistent manner.

We have also investigated the integration of the different
measures by introducing a unified model M = w1*rel _cD%,
w2*rel_cI%,w3*rel_b%,w4*mdisbr, w5*nden(k), w6*in%, w7*
out%, w8*n_l(i)%, as a function of them, where wi is a weight.
Experimental tests show that a different unified model is
needed for each different type of structure. In Table I, weights
for four different types are shown resulting in about 95%
accuracy w.r.t. expert, on the average.

TABLE I
WEIGHTS FOR DIFFERENT TYPES OF ONTOLOGIES

Type w1 w2 w3 w4 w5 w6 w7 w8

balanced
tree

8.5 6.8 10.2 13.0 13.0 33.6 5.5 9.4

unbalance
d tree

3.3 7.7 11.0 13.6 5.8 49.5 5.7 3.3

sallow tree 18.2 17.5 1.1 13.9 14.5 27.8 5.9 1.1

balanced
graph

10.6 0.7 12.7 13.0 4.5 6.7 9.4 42.3

The notion of interesting parts in ontologies has already
mentioned in the literature. It is mainly applied to web pages
(e.g. [11]). It is also related to the problem of selecting
ontologies under certain constraints [42] or to search engines
[8]. Finally, the notion of interestingness is also applied to
database schemata [3].

The most related to the proposed notion of interestingness
is the notion of \importance of concepts and relations" which
is based on a measure similar to out%, although it is a more
sophisticated one [52]. Also, very closely related is the notion
of “degree-of-interest” [15], where concepts of interest are
detected by users based on their navigation activities.

III. A NEW ONTOLOGY MAPPING THECHNIQUE BASED ON

ASSOCIATION RULE MINING

Ontology mapping aims at tackling structural and
semantic heterogeneity and incompatibility by determining
correspondences among elements of disparate ontologies.
Note that structural heterogeneity has also been addressed to a
great extent in the schema matching literature [41]. A
mapping can be established either directly between two
ontologies (alignment) or indirectly through mapping them
onto a third reference ontology which both of them share as a
common upper model (articulation).

The work of mapping ontologies is performed mostly by
hand, perhaps supported by a graphical user interface. Of
course, performing ontology mapping manually is an
extremely time-consuming and error-prone process. The
ontology mapping techniques presented in the literature are
usually based on syntactic and/or semantic heuristics. The
latter have been studied in various scientific fields including
machine learning, concept lattices, formal theories, databases
and linguistics. In almost all of them user intervention is
required, thus they are semi-automated. Usually, when an
automatic decision is not possible, these techniques suggest
possible correspondences, determine conflicts and propose
solutions and actions. Then the user makes the final selection.

We present a new ontology mapping technique (the
ONARM technique) which, given two input ontologies, is
able to map concepts in one ontology onto those in the other
without any user intervention. The proposed technique

exploits the structure of the input ontologies, i.e. the concept
hierarchies, to determine the mapping. More specifically, it is
based on association rule mining in order to extract
association rules from these concept hierarchies. Association
is one of the most popular data mining tasks. Association
rules can be used to represent frequent patterns in data in the
form of dependencies among concepts-attributes. The
extracted association rules are considered as indirectly
describing the concept relationships.

A. Previous Approaches

Recently, the number of ontology mapping techniques and
systems has increased significantly (see http:// www.
ontologymatching.org for the complete information on the
topic).

Ontology mapping techniques vary in input and output
formats as well as in modes of user intervention. There has
been little work on the comparative evaluation of ontology
mapping techniques in the literature (e.g. [19,25,26]). Next,
we present related techniques focusing on the mode of user
intervention.

FCA-Merge [45] can semi-automatically create mappings
among populated ontologies using a set of natural language
documents, which have to be relevant to each of the input
ontologies. Concepts which cannot be matched have to be
treated manually (or the set of documents has to be expanded).
During the last phase, the user manually, with guidance from
FCA-Merge, constructs the merged ontology. This
construction is semi-automatic as it requires background
knowledge about the domain. The engineer has to resolve
possible conflicts and duplicates, but there is automatic
support from FCA-Merge in terms of a query/answering
mechanism based on heuristics, which aims at guiding and
focusing on the engineers attention on specific parts of the
construction process.

CAIMAN technique [28] employs information retrieval
methods to apply to corpus of relevant documents that are
assigned to each inputted ontology, so as to automatically
create the mappings. For each concept in the first ontology,
CAIMAN calculates a probability measure for any concept of
the second ontology to be the corresponding node. The
calculation of the probability measure is based on a simple
cosine measure of the feature vectors of the two concepts.

GLUE technique [12] employs machine learning methods
to semi-automatically create semantic mappings between
populated ontologies. At first, for each concept within
ontology, GLUE finds the most similar concept in the other
ontology. Similarity is defined as the joint probability
distribution (e.g. Jaccard coefficient) of the concepts with
respect to the instances of the ontologies. In order to calculate
the similarity, Glue uses ensemble classifiers. Finally, GLUE
attempts to exploit available domain constraints and general
heuristics in order to improve mapping accuracy. User
intervention is required when concepts cannot be matched (3-
34% of the concepts on several real-world domains).

IF-Map technique [24] employs information flow theory
to automatically create mappings between populated
ontologies. IF-Map finds logic infomorphisms, if any,
between the input ontologies and displays them in RDF
format. Logic infomorphisms represent the information flow
between separate components of a distributed system.
Components are represented by local logics which describe

International Journal of Information Engineering (IJIE)

the different vocabularies, i.e. the dfferent instances (along
with their different constrains) and their classifications to
different types, used in each component.

ONION technique [32] employs linguistic and structure-
based heuristics to determine the matches, i.e. the
“articulation rules”, and finally to semi-automatically create
the mappings. Mappings in articulation are established
indirectly through mapping concepts of input ontologies with
a shared view, which is created on purpose. Linguistic
matches are based either on dictionaries like WordNet or on a
corpus of documents related to the input ontologies. Structure-
based matches are searched after the linguistic matches.
Finally, the suggested matches are validated by the user. Also,
ONION includes a learning component in the system which
takes advantage of users’ feedback to generate better matches
in the future for similar ontologies.

The mapping technique of the ITTalks system [39]
employs either a statistical majority- based heuristic or a text
classification algorithm in order to test all possible matches or
to test user defined matches. According to the heuristic, if a
concept in the first ontology matches with the majority of the
children of a concept in the second ontology, then the latter
concept is a better mapping than its children. The text
classification algorithm is used to build a classifier for each
concept in the ontologies. The classifier is based on a set of
exemplar documents assigned exclusively to each concept.

EER-CONCEPTOOL technique [10] employs a
Description Logic in order to build an articulation view for
mapping the input ontologies. It performs a number of steps
of formal concept and linguistic analysis in order to suggest
the user possible correspondences. However, in each step the
user is ultimately responsible for accepting or rejecting each
of these suggestions for concept, attribute or identifier
correspondences. Moreover, the user can introduce more
complex correspondences between unions or intersections of
concepts in each ontology, based on the ones proposed by the
system.

MAFRA technique [30] employs semantic similarity
measure and heuristics based on the similarity of two concepts
to establish a matching. It uses a semantic similarity measure
which is based on hypothesis that the more the information
two concepts share in common, the more similar they are. The
information shared by two concepts is indicated by the
information content of their most specific common subsumer.
After similarities have been established the “semantic
bridging” heuristic phase is responsible for i) establishing
correspondence between concepts, attributes and relations, ii)
endowing the mapping with bridges for concepts that do not
have a specific counterpart target concept.

S-MATCH technique [18] concentrates on semantic
matching and it employs linguistic and logic based heuristics
to automatically create the strongest semantic relation
between every pair of concepts in the input ontologies. It
distinguishes between a concept related to a label (what the
label means to the world) and a concept related to a node
(what means the concepts of labels assigned to the nodes
above it). Thus, in the preprocessing phase all labels are
translated into an internal language, which is based on
propositional logic after lexical processing. Then, it computes
relations between every pair of concepts of labels (CL matrix)
based on two sources of a priori knowledge: the one extracted
from word similarities by matchers using string manipulations

and that extracted from WordNet by matchers using the
“senses”. Then, it computes relations between every pair of
concepts of nodes (CN matrix) using CL by a satisfiability
problem solver for propositional logic.

OLA technique [16] employs semantic similarity between
concepts, which is based on the similarities of concepts
(contributor pairs) related to those are going to be checked
(anchor pair). It uses different semantic similarity measures to
calculate the similarity of a pair. To one of the eight supported
elements of an ontology, i.e. categories (e.g. class, object,
relation, etc.), a different similarity measure is defined. All of
them form the final similarity by using weights.

There are also some techniques that aim at guiding the
user to create mappings. PROMPT [34], (as well as SMART
[33] and PROMPTDIFF [35]), employs linguistic similarity
and heuristics to guide the user in the creation of the mapping.
Firstly PROMPT creates an initial list of linguistic similarity
matches based on class names. Then, the user triggers an
operation which either has been suggested by PROMPT or by
using an ontology-editing environment. Then, PROMPT
performs the operation and it automatically executes
additional changes, generates a list of suggestions, and
determines conflicts. CHIMAERA [31] is a similar interactive
browser-based editing, merging, and diagnosis tool for the
Ontolingua editor. As in PROMPT, the user is in charge of
making decisions that will affect the mapping process.
CHIMAERA analyzes the ontologies which are to be merged,
and if linguistic matches are found, the merge is done
automatically; otherwise the user is prompted for further
action.

Moreover, there are techniques which are based on the
combination of different mapping processes (e.g. [2,21]),
which exhibit remarkable results in terms of accuracy
(http://oaei.ontologymatching.org). Also, there are techniques
that could potentially be used in ontology mapping like
translators (e.g. OntoMorph [9]) or integrators (e.g. 20).
Finally, a similar problem is that of schema matching in
databases.

B. The Proposed Ontology Mapping Technique

The key idea of the proposed ontology mapping technique
is to establish a similarity between two concepts of the input
ontologies, which is based on their location in the ontology
structures. The location of a node, which represents a concept
within an ontology structure, determines its neighbour
concepts. We consider that the meaning of a concept is also
characterized by the meaning of its neighbour concepts, as the
creator of the ontology indirectly determined by defining the
structure of the ontology.

Note that structural mapping alone is not sufficient for
ontology mapping. The meaning of the concept is also
characterized by a linguistic analysis of the concept with
respect to a large-scale dictionary like WordNet, to a corpus
of documents, to manual rules, to lexical distances, etc. The
proposed technique accepts both of these sources of
background knowledge in order to establish a similarity
measure. However, the latter is dominated by the location of a
concept within the ontology.

Graph matching techniques could be used in order to
examine the similarity of the location of two input concepts.
Since we concentrate on efficiency, we rejected such
techniques because of their time complexity (for instance time

International Journal of Information Engineering (IJIE)

complexity of graph isomorphism is exponential). The
proposed technique considers each path of the ontology
structure as a source of background knowledge. It applies
association rule mining in order to determine the predominant
neighbour concepts of an input concept.

In this paper, we consider association rule mining which is
known as the market basket problem, and in which concepts-
attributes represent products and the initial database, is a set
of customer purchases (transactions). This particular problem
is well-studied in data mining. We consider association rules
an analog to the form “90% of the customers that purchase
product x also purchase product y” (Boolean association rules)
(e.g [1,7,38]). Formally, an association rule is a rule of the
form XY, where X,Y named respectively antecedent and
consequent of the rule and X,Y I={i1,i2, ... ,ij}, such that
XY= and ik, 1kj is an item in the transaction database D.
The informative power (named interestingness) of each
association rule is measured by two indexes: the Support that
measures the proportion of transactions in D containing both
X and Y and the Confidence that measures the conditional
probability of the consequent given the antecedent.

More specifically, the proposed technique considers each
path of the ontology structure as a transaction. Then, for each
inputted ontology, it applies association rule mining to the set
of its transactions. We consider that the extracted association
rules determine the predominant neighbor concepts of every
input concept. Thus, the similarity of these association rules
defines the location-based similarity of the concepts.

Linguistic analysis is also taken into consideration.
However, it is used to increase or decrease the obtained
location-based similarity (see  parameter below). In that
sense, any heuristic for linguistic analysis proposed in the
literature can be used. Also, aggregating the results of such
heuristics could also be used, as for example in [13,14]. In
this paper, we adopt a naive such heuristic: we examine
identity of labels of concepts, while we use a common
vocabulary for both ontologies. Obviously, more advanced
heuristics would increase the overall accuracy.

The proposed technique can be applied to ontology
structures forming a directed acyclic graph. Thus, it supports
multiple inheritance. The required formal definition of input
ontologies contains two core items shared by most formal
definitions of an ontology in the literature: concepts and a
hierarchical IS-A relation. Thus, we define a core ontology as:
a pair G=(C,r), where C is a set of concepts and r is a partial
order on C, i.e. a binary relation rCXC which is reflexive,
transitive, and antisymmetric.

More specifically, the proposed technique accepts two
ontologies as input. Any ontology editor can be used to create
them (we used the Protégé knowledge-modeling environment).
During the first step the input ontologies are transformed to
RDF and RDFS formats. Obviously, any ontologies pre-
described in RDF(s) can be used. Then, the Java-Jena API is
used. Jena is a Java implementation of an extension to the
semantic web by means of a respective API. This offers the
capability of getting the complete description of the input
ontology in terms of its structural elements (paths, current
nodes, successor nodes, parent nodes, siblings and leaf nodes).
In order to apply the APRIORI association rule mining
algorithm [1], nodes must be topologically numbered. Thus,
the second step is to generate a numbered node structure, of
the same structure as the ontology under examination but

numbered with integer numbers that will undergo Breadth
First Search (BFS), such that, integers are horizontally
incremented and assigned and therefore guaranteeing this way,
that any node Ni is numbered with an integer k such that k>m,
where m is the integer which has been assigned to its parent
node M (this relation holds true for any parent and child nodes
within the input ontology). In this way, nodes at deeper levels
are mapped with higher number values.

After numbering the Ontology, a hash table is built that
includes all the nodes of the ontology with their respective
integers. Then, to extract all the possible paths, with the
objective to quick reach and examine priority terminal nodes
its paths, a Depth First Search (DFS) is run, that provides all
possible paths number-named in a list type format. The
methodology has been designed in such a way that permits
multiple inheritance (and therefore has multiple parents) in
the following way and under the definition: L(i) is the level of
node i and L(i)=max(L(l1),L(l2), ... ,L(ln)), where l1,l2, ... ,ln are
parent nodes of node i.

To resolve the above problem during the numbering
process, the integers that are assigned to the nodes are non-
continuous but they retain the necessary property needed for
the APRIORI algorithm, such as: for any two nodes I and J,
order (J)>order (I), if node J is a parent node of I.

This step involves the extraction of all root-to-leaf paths
available in the ontology schema by means of a recursive
method. Furthermore, a list of all leaf nodes is created. Then,
for a predefined set of minimum support and confidence
values, APRIORI algorithm is applied to both input
ontologies (e.g. G1 and G2). The result is a set of rules of the
following type:

1: [2,7], 45, 20
2: [1, 7, 4], 30, 70
3: [1, 3, 6], 45, 20
4: [1, 3, 4], 30, 70
…
where, the integers above denote number-named nodes of

the ontology. Each pair of (c,s) produces such one respective
set of rules R(G1), R(G2). Following, the above rule set is
back translated and represented with the original node names,
providing this way R’(G1), R’(G2) of rules.

The proposed technique generates an [nxm] “significance
matrix” containing the significance in mapping every node of
G1=(C1,r1) with every one of G2=(C2,r2). Note that G2 is
mapped against G1 and not vice versa, considering G1 as our
reference ontology. The significance in mapping XC1 to
YC2 is calculated based on the support measure of the
association rules having X and Y as left part. For instance,
consider the following rules for X and Y:

X(B,s1,c1),

X(BC,s2,c2),

Y(B,s3,c3),

Y(AC,s4,c4)

For each of the four pairs of rules, one for X and the other
for Y , the measures K and Kt, indicating the significance, are
computed by the following procedure:

K=0, if |sX-sY|>,

 where α a user defined threshold.

International Journal of Information Engineering (IJIE)

KAverage(sX,sY)**w,

where >1 if X or Y or both are instances,

=1 otherwise,

w=percentage of similarity of right parts.

Kt=K*,
where >1 if XY, i.e. the two nodes are identical after a

linguistic analysis,

=1 otherwise.

Thus, for the pair:

X(B,s1,c1),Y(B,s3,c3)K=Average(s1,s3)*1*1, while
for the pair:

X(B,s1,c1),Y(AC,s4,c4)K=Average(s1,s4)*1*0 and
for the pair:

X(BC,s2,c2),Y(AC,s4,c4)K=Average(s2,s4)*1*0.5.

Considering that nodes of reference ontology G1 are listed
in rows and those of G2 are listed in columns, the
“significance matrix” is filled as follows:

for every cell (i,j) in the n x m matrix

calculate pK,  pair p of rules, one for i and the other for
j

calculate Kt

fill cell (i,j) with Kt

repeat

find the cell (i,j) filled with the first maximal Kt in the
matrix

map i to j

delete row i and column j

until there is not any row left

For some minimum support and confidence (e.g.
(s,c)=(25,5)), the proposed technique extracts rules from two
ontologies (e.g. G1 and G2) and builds the significance matrix.
Finally, it provides final mappings along with their
significance, e.g.:

[G1] : ooo50  [G2] : ooo50; 75.0

We performed extensive empirical tests (see [46]) aiming
at examining the accuracy of the proposed technique using
both test and real ontologies. High accuracy is achieved in
most of the cases (up to 100%). High accuracy is also
achieved on specific OAEI-2008benchmarks
(http://oaei.ontologymatching.org/). For instance, 100%
accuracy is achieved by testing the ontology 101 of OAEI-
2008 against itself since all the 93 nodes were mapped
correctly. Also, 100% accuracy is achieved by testing the
ontology 101 against ontology 228, since all the 93 common
nodes were mapped correctly.

The empirical tests show that minimum support and
confidence values are not critical. The only requirement is to
set low values. Theoretically this is true because of the small
number of paths of an ontology. For instances, the results on
the OAEI- 2008 benchmarks mentioned in the previous
paragraph were performed setting both minimum support and
confidence to 5.

C. Efficiency in Ontology Mapping

The time complexities presented in the following were
considered for the worst case.

In the proposed technique, the extraction of association
rules is performed separately for each ontology, which is
O(|Gi|*|Ck|), where |Ck| is the number of all candidate itemsets
checked. According to [1], the complexity of locating the
itemsets of size k is O(k*log(|Gi|/k)) (however in random
databases there are only a few large itemsets). In the proposed
technique the maximum size is d, the depth of the ontology.
Thus, latter the complexity is: O(d

j=1 j*log(|Gi|/j)) which is
O(d2log(|Gi|)). Thus, the overall complexity of extraction is
O(d2log(|Gi|)). The used similarity matrix is obtained in
O(|G1|*|G2|).

In FCA-Merge, the problem of computing concept lattices
has exponential worst case complexity. In practical cases, the
“Next Closure” algorithm for computing concept lattices is
O(B(K)*|D|*(|G1|+|G2|)

2), while the complexity is
O(B(K)*(|D|+(|G1|+|G2|))*|D|) for the algorithm of Nourine
and Raynaud. Also, note that the time complexity of
TITANIC algorithm is between them.

CAIMAN technique requires a time-consuming phase in
order to build the feature vector of each concept in the input
ontologies. The calculation of a similarity matrix for any two
concepts, based on the feature vectors, is O(|G1|*|G2|).

GLUE is a time consuming technique. For every pair of
concepts (A,B) AG1, BG2 it computes their similarity by
applying the Naive Bayesian classifier (assuming that all the
base learners an trained in parallel), which is
O(|G1|*|G2|*(|n1|+|n2|)), where n1, n2 are the instances of G1,
G2 respectively. This is because the complexity of Naive
Bayesian classifier is linear to the training set. Also, the
complexity of "relaxation labeling", which depends on the
compatibility coefficients, is linear to the number of labels,
thus it is O(|G1|+|G2|).Note also, that the convergence
properties of "relaxation labeling"are not yet well understood
and it is liable to converge into a local maxima.

IF-Map has an exponential time complexity and thus it
cannot be applied to large-scale ontologies. This is because it
must automatically generate all possible mappings among
ontologies. Thus, the search space is exponential and IF-Map
tries to reduce it by using the instances. By using the
constraint, a mapping has to respect concept hierarchy.

In ONION technique, linguistic matches which are based
on dictionaries require an exhaustive search in extremely
large-scale dictionaries with many hundreds and thousands of
concepts, like WordNet with 106 concepts. Thus, a word
similarity construction based on WordNet is
O(|G1|*|G2|*|GWordNet|). Linguistic matches based on a corpus
of documents require a time-consuming preprocessing in
order to build the context vector of each concept in the input
ontologies. The calculation of a similarity matrix for any two
concepts based on the context vectors, is O(|G1|*|G2|). Also,
the graph isomorphism is a NP problem.

The mapping technique of the ITTalks system requires
every pair of concepts either to test their children or to
classify the assigned concept exemplar documents. Thus, its
complexity is O(|G1|*|G2|*D*O(classify)), where D is the
mean number of exemplar documents assigned to a concept
and O(classify) and is the complexity of the classification of a
document, a rather complex process.

In EER-CONCEPTOOL technique different inference
mechanisms on the Description Logic are used in order that
the formal concept and linguistic analysis can be performed.

International Journal of Information Engineering (IJIE)

Although ontologies are represented using the Description
Logic, without loss of generality, a formal concept analysis is
reduced to traversals of ontology structures, for every concept
of the articulation ontology Ga, which is O(|G1|+|G2|*|Ga|).
Moreover, linguistic analysis requires every concept in the
input ontologies, a search in the WordNet, an extremely large-
scale dictionary with 106 concepts, which is O (|G1|+|G2|*|
GWordNet|).

In MAFRA technique the time complexity of the adopted
semantic similarity measure for two concepts is O(d), where d
is the depth of the ontology. Thus, the time complexity of
calculating a similarity matrix is O(|G1|*|G2|*d). The semantic
bridging phase is reduced to access the similarity matrix and
to perform ontology traversals, which is not significantly
more time-consuming than the calculation of the similarity
matrix.

In S-MATCH technique the most time consuming phase is
the computation of the CN matrix. For every pair of concepts
of nodes a satisfiability problem solver must be applied. The
satisfiability problem is a known NP-complete problem
requiring an exponential time. The overall complexity of this
phase is O(|G1|*|G2|*2V), where V is the number of logical
variables in the propositions represented the background
knowledge.

In OLA technique, for each pair of concepts an iterative
process is executed in order to calculate similarity.
Complexity is increased if there are recursive dependencies
(two pairs of nodes are each other’s contributor). In general, a
non- linear problem must be solved in order to calculate
similarity.

Finally, note that recently there is a concern on efficiency
of the proposed ontology mapping techniques in the literature.
For instance the work presented in [13] tries to reduce the
search space by introducing certain strategies to select the pair
of concepts checking for mapping. Thus the time complexity
is reduced to O((|G1|+|G2|)*log(|G1|+|G2|)).

D. System Architecture

A system is implemented, the Concept Net, in order to
evaluate the proposed methodology in practical applications.
The general system architecture is composed by two major
modules. The first module, the front-end module, runs on
user's personal computing device. Note that the system can
run on mobile devices such as Personal Digital Assistants and
mobile phones. The second module, the back-end module,
implements all the logic and algorithms and it runs on the
server side. These two modules communicate to each other
via web services which have been developed for this purpose.

The front-end module (Fig. 2) is composed by three main
components: the “Graphical User Interface”, the “Web
Services Interfaces (WS IFCs)” and the “Operating System
Utility”.

The “Graphical User Interface” component consists of a
set of forms via with the end user interacts with the system. It
includes all the forms that the user uses to interact with the
system, as well as the forms that compose the GUI for the
developed ontology editor. The ontology editor is a light
graph editor that allows the end user to visualize all the
concepts that are relevant to him, as well as their relations, in
a form of a graph. This graph is stored locally to this module.

The “Web Services Interfaces (WS IFCs)” component
consists of service calls, which are responsible for all the

communication between the client front-end device and the
back-end system. Such kind of data is low level data, like the
physical location where the main server is located in terms of
IP, port, function calls, etc. This component can send and
receive specific user information, like authentication
information, graph to be processed, reception of similar nodes
from other nodes from other users in the Concept Net, etc.

The “Operating System Utility” component consists of
low level utilities that organize functionality dealing with
access to file system. This functionality incorporates storage
and retrieval of users’ credentials, personal infomation
regarding to the system accessibility, storage of
graphs/ontologies that the user creates and graphs which are
received from the back-end system. All the communication
between the client system in the front-end device and the
server based back-end system is achieved via this set of web
services calls only.

The back-end module (Fig. 3) is currently implemented
using the Java Programming Language. It is composed by the
“Web Services Interfaces (IFC)”, the “Data Access Layer”,
the “System Logic & Intelligence Module", the “Knowledge
Service”, the “Database” and the “Operating System & File
System Access Layer”.

The “Web Services Interfaces (IFC)” component is
responsible for all the communication between the users'
client devices and the back-end system.

The “Data Access Layer” incorporates all the functionality
needed to send queries to system database as well as to
receive information from it, during the system operation. This
information is relevant to authentication as well as to user's
knowledge profile.

Fig. 2 The front-end module

Fig. 3 The back-end module

International Journal of Information Engineering (IJIE)

The “System Logic & Intelligence Module” incorporates
all the functionality dealing with the main operation of the
proposed methodology. It includes submodules that
implement the following functions:

Graph Analysis. This sub-module accepts an ontology in
the form of graph and performs operations to analyze it in
terms of paths, nodes, leaf nodes, parent and children nodes of
every node. This functionality is achieved byusing the HP
Jena API for ontology querying, in RDF/RDFs graph formats.

Apriori: Association Rule Mining Algorithm. This sub-
module accepts as input all the possible paths and outputs the
paths with the most significant associations among their nodes.

Concept Matching. This sub module inputs two sets of
paths, outputs the most "interesting" ones to match each other.

Ontology Alignment. Based on the above, this sub-module
performs the actual implementation and integration of the
concepts into the user's graph.

The “Knowledge Service” component implements a set of
function calls. When it is called properly from the “Web
Services Interfaces” component, it performs the respective
task. The function calls implemented in “Knowledge Service”
are: Echo, GetConfiguration, LoginUser, UpdateInLineStatus,
GetConceptList, GetUserByStatus, UploadUserGraph,
RegisterUser, SynchronizeGraphs and GetUserGraph.

The “Database” stores all the system information, users'
knowledge profiles, concepts, etc. Finally, the “Operating
System & File System Access Layer” implements
functionality for accessing the Operating System, so that the
overall system can be easily transferred to a variety of
Operating Systems.

The Concept Net system has been implemented for proof
of concept purposes, as a full working prototype. It is applied
for evaluation purposed to different domains. For instance, it
is applied to the tourism domain [48]. The objective was to
recognize among two Concept Net users (tourists), identify
their personal ontology graphs, and analyze them by using the
proposed methodology and finally exchange the concepts that
interest each user.

IV. CONCLUSIONS

We present a system for detecting and then exchanging
interesting parts of ontologies. To detect the interesting parts
of ontologies, we define and evaluate a number of different
measures of interestingness of parts of ontologies, in which
each one represents different semantics of interestingness.

To exchange the interesting parts of ontologies, we
propose a new ontology mapping technique, which exploits a
structural similarity measure. Since it is based on the structure
of ontologies, it can handle both metadata and instance
heterogeneity. Moreover, it can easily be included in systems
based on combination of mapping techniques, especially
when only a few techniques are there for structural similarity
([13,16,22]). Also, it exhibits a low time complexity with
respect to the related approaches.

ACKNOWLEDGMENT

We wish to thank Costas Sidiropoulos for his help during
the tests.

REFERENCES
[1] R. Agrawal, H. Mannila, R. Srikant and A.I. Verkamo, Fast Discovery

of Association Rules, in Advances in Knowledge Discovery and Data
Mining, U.M. Fayyad, G. Piatetsky-Shapiro and P. Smyth Eds. AAAI
Press/MIT Press, pp. 307, 1996.

[2] D. Aumueller, H.H. Do, S. Massmann, and E. Rahm, “Schema and
ontology matching with COMA++”, in Proc. SIGMOD
(Demonstration), 2005.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou, “Objectrank:
Authority-based keyword search in databases”, in Proc. VLDB, 2004,
p. 564.

[4] T. Berners-Lee, “Weaving the Web”, (Harper, 1999).
[5] J. Bock, R. Topor, and R. Volz, “Ontology Merging using Answer Set

Programming and Linguistic Knowledge”, in Proc. OAEI, 2007, p.
316.

[6] B. Boutsinas and T. Papastergiou, “On clustering tree structured data
with categorical nature”, Pattern Recognition, 41, pp. 3613-3623, 2008.

[7] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur, “Dynamic Itemset
Counting and Implication Rules for Market Basket Data”, in Proc.
ACM SIGMOD Int. Conf. Management of Data, 1997, p. 255.

[8] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine”, Computer Networks, 30(1-7), pp. 107-117, 1998.

[9] H. Chalupksy, “OntoMorph: a translation system for symbolic
knowledge”, in Proc. 7th International Conference on Principles of
Knowledge Representation and Reasoning, 2000.

[10] E. Compatangelo and H. Meisel, “Reasonable support to knowledge
sharing through schema analysis and articulation”

[11] L. Ding, R. Pan, T. Finin, A. Joshi, Y. Peng and P. Kolari, Finding and
Ranking Knowledge on the Semantic Web, ser. Lecture Notes in
Computer Science, p. 156, (2005, vol. 3729.

[12] A. Doan, J. Madhavan, P Domingos, and A. Halevy, “Learning to map
between ontologies on the semantic web”, in Proc. 11th International
World Wide Web Conference, 2002.

[13] M. Ehrig and S. Staab, “QOM Quick Ontology Mapping”
[14] M. Ehrig and Y. Sure, “Ontology Mapping - An Integrated Approach”
[15] T. d'Entremont and M.-A. Storey, “Using a degree-of-interest model

for adaptive visualizations in Protégé”, in Proc. 9th International
Protégé Conference, 2006.

[16] J. Euzenat and P. Valtchev, “Similarity-based Ontology Alignment in
OWL-Lite”, in Proc. ECAI, 2004, p. 333.

[17] A. Firat and S. Madnick, “Knowledge Integration to Ontological
Heterogeneity: Challenges from Financial Information Systems”, in
Proc. 23rd International Conference on Information Systems, 2001.

[18] F. Giunchiglia, P. Shvaiko and M. Yatskevich, “S-Match: an
Algorithm and an Implementation of Semantic Matching”, in Proc.
ESWS, 2004.

[19] F. Giunchiglia, M. Yatskevich, P. Avesani and P. Shvaiko, “A Large
Scale Dataset for the Evaluation of Ontology Matching Systems”,
Knowledge Engineering Review Journal, (to appear), 2008.

[20] E. Hovy, “Combining and Standardizing Large-Scale, Practical
Ontologies for Machine Translation and Other Uses”, in Proc. 1st
International Conference on Language Resources and Evaluation, 1998.

[21] W. Hu and Y. Qu, “Falcon-AO: A practical ontology matching
system”

[22] W. Hu, N. Jian, Y. Qu and Y. Wang, “GMO: a graph matching for
ontologies”, in Proc. K-CAPWorkshop on Integrating Ontologies,
2005, p. 41.

[23] M.N. Huhns and M.P. Singh, “Ontologies for agents”, IEEE Internet
Computing, 1(6), pp. 81-83, 1997.

[24] Y. Kalfoglou and M. Schorlemmer, Information-flow-based ontology
mapping, ser. Lecture Notes in Computer Science, p. 1132, 2002, vol.
2519.

[25] Y. Kalfoglou and M. Schorlemmer, “Ontology Mapping: the State of
the Art”, The Knowledge Engineering Review, 18(1), 2003.

[26] S. Kaza and H. Chen, “Evaluating Ontology Mapping Techniques: An
Experiment in Public Safety Information Sharing”

[27] C.-C. Kiu and C.S. Lee, “Ontology Mapping and Merging through
OntoDNA for Learning Object Reusability”, Educational Technology
& Society, 9(3), pp. 27-42, 2006.

[28] M.S. Lacher and G. Groh, “Facilitating the exchange of explicit
knowledge through ontology mappings”, in Proc. 14th International
FLAIRS Conference, 2001.

[29] A. Maedche and S. Staab, “Semi-automatic engineering of ontologies
from texts”, in Proc. 12th International Conference on Software
Engineering and Knowledge Engineering, 2000, p. 231.

[30] A. Maedche, B. Motik, N. Silva and R. Volz, “MAFRA A MApping
FRAmework for Distributed Ontologies”

International Journal of Information Engineering (IJIE)

[31] D.L. McGuinness, R. Fikes, J. Rice and S. Wilder, “An Environment
for Merging and Testing Large Ontologies”, in Proc. 7th International
Conference on Principles of Knowledge, Representation and
Reasoning, 2000, p. 483.

[32] P. Mitra and G. Wiederhold, “Resolving Terminological Heterogeneity
In Ontologies”, in Proc. ECAI02 workshop on Ontologies and
Semantic Interoperability, 2002.

[33] N.F. Noy and M. Musen, “SMART: automated support for ontology
merging and alignment”, in Proc. 12th Workshop on Knowledge
Acquisition, Modelling and Management, 1999.

[34] N.F. Noy and M. Musen, “PROMPT: algorithm and tool for automated
ontology merging and alignment”, in Proc. 17th National Conference
on Artificial Intelligence and 12th Conference on Innovative
Applications of Artificial Intelligence, 2000, p. 450.

[35] N.F. Noy and M. Musen, “PROMPTDIFF: a fixed-point algorithm for
comparing ontology versions”, in Proc. 18th National Conference on
Artificial Intelligence, 2002, p. 744.

[36] N.F. Noy and M. Klein, “Ontology evolution: not the same as schema
evolution”, Knowledge and Information Systems, 6(4), pp. 428-440,
2004.

[37] B. Omelayenko, “Integration of product ontologies for B2B
marketplaces: a preview”, SIGecom Exch., 2(1), 2001.

[38] J S. Park, M. S. Chen and P. S. Yu, “An Effective Hash-Based
Algorithm for Mining association rules”, in Proc. ACM SIGMOD Int.
Conf. Management of Data, 1995, p. 175.

[39] S. Prasad, Y. Peng and T. Finin, “Using Explicit Information To Map
Between Two Ontologies”

[40] A. Pretschner and S. Gauch, “Ontology based personalized search”, in
Proc. 11th IEEE Intl. Conf. on Tools with Artificial Intelligence, 1999,
p. 391.

[41] E. Rahm, and P.A. Bernstein, “A Survey of Approaches to Automatic
Schema Matching”, VLDB Journal, 10(4), 2001.

[42] M. Sabou, V. Lopez and E. Motta, Ontology selection for the real
semantic web: How to cover the queens birthday dinner?, in ser.
Lecture Notes in Computer Science, p. 96, 2006.

[43] I. Schmitt and G. Saake, “Merging inheritance hierarchies for database
integration”, in Proc. CoopIS98, 1998, p. 322.

[44] V. Spiliopoulos, A.G. Valarakos, G.A. Vouros and V. Karkaletsis,
“Learning Subsumption Relations with CSR: A Classification based
Method for the Alignment of Ontologies”, in Proc. OAEI, 2007, p. 321.

[45] G. Stumme and A. Maedche, “Ontology Merging for Federated
Ontologies on the Semantic Web”, in Proc. International Workshop for
Foundations of Models for Information Integration, 2001.

[46] C. Tatsiopoulos and B. Boutsinas, “Ontology Mapping based on
association rule mining”, in Proc. 11th International Conference on
Enterprise Information Systems, vol.3, 2009, p. 33.

[47] C. Tatsiopoulos, B. Boutsinas and K. Sidiropoulos, “On Aligning
Interesting Parts of Ontologies”, in Proc. International Joint
Conference on Knowledge Engineering and Ontology Development,
2009, p. 363.

[48] C. Tatsiopoulos and B. Boutsinas, “Automatic knowledge exchanging
between tourists via mobile devices”, Journal of Hospitality and
Tourism Technology, 1(2), pp. 163-173, 2010.

[49] Virtual Vineyards
[50] The W3 website. [Online]. Available:

http://www.w3.org/DesignIssues/Principles.html.
[51] H. Wache, T. VÄogele, U. Visser, H. Stuckenschmidt, G. Schuster, H.

Neumann and S. HÄubner, “Ontology-Based Integration of
Information - A Survey of Existing Approaches”, in Proc. IJCAI
Workshop: Ontologies and Information Sharing, 2001.

[52] G. Wu, J. Li, L. Feng and K. Wang, “Identifying Potentially Important
Concepts and Relations in an Ontology”, in Proc. International
Semantic Web Conference, 2008, p. 33.

