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Abstract-Due to the decentralization in the Semantic Web, 
ontologies can be designed and developed by different 
communities, using different vocabularies and overlapping 
content. In this paper, we present a system for ontology 
exchanging between communities. More specifically, the system 
updates parts of ontologies, which are considered to be 
interesting by its designer, using the knowledge included in 
another. Interestingness is detected automatically utilizing a set 
of newly proposed measures. Updating is based on a new 
ontology mapping technique. Also, to facilitate the comparison, 
we present a survey of ontology mapping and merging/alignment 
techniques. 
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I. INTRODUCTION 

Ontology engineering which includes designing, 
developing, maintaining and sharing ontologies, is an 
emerging knowledge engineering process. It allows the 
information to be organized into taxonomies of concepts, be 
represented by attributes, and to disclose relationships 
between concepts, be represented by functions, IS-A relations, 
constraints, etc. Ontologies find acceptance in numerous 
applications, e.g. information retrieval [40], document 
management [28], agent communication [23], finance [17] 
and e-commerce [37,49]. 

Ontologies are imposed by the explosive growth of the 
Semantic Web, where they are used to describe the semantics 
of the data. They are used for conceptually structuring of data 
and for knowledge sharing. Due to the decentralized nature of 
both the WWW and the Semantic Web [4,50], it is inevitable 
that different communities, i.e. groups of people with similar 
interests, within the so-called information society represent 
and treat the same basic concepts in different ways. For 
example, the basic concept “Person” is treated entirely 
different in the medical ontology from that in the business one. 
Therefore, ontologies can be designed and developed by 
different communities without adopting common standards 
for information exchange. On the other hand, the leverage of 
synergies of information exchange has been increased by the 
deployment of systems for community interaction support. 
Many researchers (e.g. [28,29,32,45]) argued that  the 
commonness of all systems ontologies cannot be guaranteed 
(see [51] for a survey of such effort), because it is more 
efficient if a smaller community is involved in the process and, 
in general, communities can usually not be forced to adopt 
common standards. 

In this paper we present a system for ontology exchange 
between agents, in which ontologies may use different 
vocabularies and may have overlapping content. This problem 
is important for agent-oriented applications of ontologies, 
whenever an agent need to update its knowledge from other 
agents. The system is based on detecting interesting parts of 

ontologies and then using a new ontology mapping technique, 
which is based on association rule mining.  

In the rest of the paper, we first describe the technique for 
detecting interesting parts of ontologies (Section 2) and the 
new ontology mapping technique (Section 3) and then we 
present the system architecture (Section 4). Finally, we draw a 
conclusion (Section 5). 

II. ON DETECTING INTERESTING PARTS OF ONTOLOGIES 

Within the proposed system, we consider the problem of 
exchanging parts of ontologies but not the whole ontologies, 
which is actually related to ontology merging and alignment. 
More specifically, we consider the problem of updating an 
ontology using the knowledge included in another. However, 
the update is performed only for the parts of the first ontology 
which are considered interesting by its designer. The 
interestingness is decided by the system itself but not  the 
designer.  

Thus, we reduce the problem to automatic detection of the 
interesting parts based only on the structure of the ontology 
and not on any user input. Of course, the knowledge included 
in the interesting parts of the one ontology must be a superset 
of knowledge included in the interesting parts of the ontology 
to be updated.  

To tackle the problem, we define a number of different 
measures of interestingness of parts of ontologies. Each such 
measure represents different semantics of interestingness. 
After the interesting parts have been located in any alignment, 
the algorithm proposed in the literature could be applied (see 
next subsection) for updating the ontology. 

The term "interestingness" was first used in data mining as 
a measure of how much interesting an extracted data mining 
rule is with respect to a user judgement. "Entropy" and 
"support" are such measures of interestingness. There is not 
any generally accepted definition of interestingness. In fact, 
each of the proposed measures concerns a different aspect of 
what "interestingness" in ontologies could mean. Note that the 
proposed measures exploit only the structure of the 
ontologies， the proposed measures are domain/application 
independent. 

A. Related Merging/Alignment Techniques 

There are some techniques presented in the literature for 
ontology merging and alignment. They all consider the 
merging or alignment of the entire input ontologies. The key 
ideas of any of them could be applied to the alignment of 
interesting parts after they have been located 

The methodology presented in [20] merges mapped 
concepts and then it applies validation heuristics in order to 
avoid both structural and content-based inconsistencies. For 
instance, it checks: 1) for new superconcepts of a merged 
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concept, i.e. concepts that were not already superconcepts of 
the merged concept in the input ontology, 2) if mutual 
disjointness requirements are still satisfied by merged 
concepts, as in the input ontologies, 3) if any cycles are 
created after merging, 4) if there are any type constraints 
violations after merging. 

Chimaera [31] is a tool that focuses the attention of the 
user in particular portions of the ontology that are 
semantically interconnected and in need of repairing or further 
merging. More specifically, Chimaera coalesces semantically 
identical terms from different ontologies, so that they are 
referred to by the same name in the resulting ontology, and 
identifies terms that should be related by subsumption, 
disjointness, or instance relationships and provide support for 
introducing those relationships. After merging, Chimaera 
provides support for recognizing logical inconsistencies and 
for validating the resulting ontology. 

FCA-Merge [45] employs Formal Concept Analysis to 
create, in a first phase, mappings between populated 
ontologies. It is based on a set of natural language documents. 
It represents the set of documents assigned to each inputted 
ontology using the vector space model, it generates two 
formal concepts out of these sets and it generates a pruned 
concept lattice. The merging phase is performed after 
processing the formal concepts of the pruned concept lattice. 
Each such concept is a candidate for a concept, a relation, or a 
new subsumption in the merged ontology. The user has to 
interact with the system in order to resolve possible conflicts 
and duplicates, but there is automatic support from FCA-
Merge in terms of a query/answering mechanism based on 
heuristics. Several cases are examined. For example, two or 
more concepts of the source ontologies generate the same 
formal concept. This indicates that the concepts should be 
merged into one concept in the target ontology. The user is 
asked which of the names to retain. 

The PROMPT tool [34] is designed to maintain the focus 
of users and to provide feedback to the user during mapping 
and then during merging or alignment. First PROMPT creates 
an initial list of linguistic similarity matches based on class 
names. Then, the user triggers an operation which either has 
been suggested by PROMPT or by using an ontology-editing 
environment. Then, PROMPT performs the operation and it 
automatically executes additional changes, generates a list of 
suggestions, and determines conflicts. There are specific such 
operations for merging/alignment. For example, the operation 
“perform a deep copy” includes copying all the parents of a 
class down to the root of the hierarchy and all the classes and 
slots it refers to. After such operations, conflicts that may 
appear could be: 1) name conflicts (more than one frame with 
the same name), 2) dangling references (a frame refers to 
another frame that does not exist), 3) redundancy in the class 
hierarchy (more than one path from a class to a parent other 
than root), etc. 

Ontomorph [9] is a tool to support the translation of 
symbolically represented knowledge into some different form. 
It is based on a mixture of syntactic and semantic criteria. It 
can be used to support knowledge-based merging tasks, as 
well. This is accomplished by finding, at first, semantic 
overlaps and then by designing transformations to bring 
sources into mutual agreement. Finally, it checks the resulting 
knowledge for consistency, uniformity, and non-redundancy. 
After checking, the previous steps will be repeated if it is 
necessary. 

OntoDNA [27] is an automated ontology mapping and 
merging tool. It utilizes Formal Concept Analysis to capture 
the properties and the inherent structural relationships among 
ontological concepts of heterogeneous ontologies. More 
specifically, it generates two formal concepts out of one 
source and one target ontology. After a pre-linguistic 
processing of these formal concepts, certain mapping rules are 
applied to reconcile their intents. Thus, the captured structures 
of ontological concepts act as background knowledge to 
resolve semantic interpretations in the next phase, where 
unsupervised clustering techniques, (Self-Organizing Map 
and K-means), are used. Finally, the ontological concepts of 
the target ontology are updated to the source ontology based 
on certain merging rules. 

In [44] the alignment problem is reduced to the discovery 
of subsumption relations among ontology elements. The 
proposed technique computes subsumption relations between 
concept pairs of the two input ontologies extracted by a 
mapping tool. Thus, concept pairs are represented as feature 
vectors of length equal to the number of the distinct properties 
of source and target ontologies: properties with equivalent 
meaning correspond to the same vector component. Then, 
given a pair of concepts, a supervised machine learning 
method locates a hypothesis concerning their relation in a 
space of hypotheses, which best fits to the training examples, 
generalizing beyond them. The training examples for the 
learning method are being generated from the target and 
source ontologies. 

In [5] a semi-automatic merging algorithm is presented, 
where users can choose appropriate results from a set of 
suggestions. It is based on combining Answer Set 
Programming with linguistic background knowledge. The 
latter is used to detect correspondences between concepts 
based on synonymy while Answer Set Programming 
calculates several answer sets which provide merging options 
among which the user can choose. To restrict the exponential 
number of possible merging solutions to reasonable ones, 
there are constraints in the form of intuitive merging rules 
which the user can apply. 

Finally, a similar problem is that of database schema 
integration (e.g. [43]). However, most schema matching and 
integration techniques are not adequate for ontology mapping 
and merging/alignment due to the not handled differences in 
terminology, exhibiting poor results in the case of little 
structural similarity, and  absence of instances, etc. Despite 
the support or the controversy of the statement that ontology 
mapping/alignment is similar to database schema 
matching/integration [25,36], the proposed measures could be 
applied to both of them. 

B. The Proposed Interestingness Measures 

We propose some measures of interestingness and we 
present their definitions. We have investigated several others. 
However the proposed ones exhibit significant results during 
empirical tests. They are all based on the structure of 
ontologies. 

The proposed measures are all based on detecting 
interesting concepts within ontologies. Then, we consider 
interesting parts of an ontology the subgraphs rooted in these 
interesting concepts. Thus, the proposed measures assign a 
value to each concept representing its interestingness: 

rel_cD% Percentage Direct Child Nodes: the number of 
nodes which are directly connected to a specific node, as 
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percentage of the number of nodes in the ontology. Note that 
the higher is the value of the measure for a node, the greater is 
its interestingness. For example, in ontology shown in Fig. 1, 
node oo250 (rel_cD%=10.71%) is more interesting than 
oo180 (rel_cD%=0%) or even ooo40 (rel_cD%=7.14%), since 
it has more direct child nodes. 

rel_cI% Percentage Indirect Child Nodes: the number of 
nodes in the subgraph rooted at a specific node, as percentage 
of the number of nodes in the ontology. Note that the higher is 
the value of the measure for a node, the greater is its 
interestingness. For example, node ooo95 (rel_cI%=42.86%) 
is more interesting than oo185 (rel_cI%=14.29%), since there 
are more nodes in the subgraph rooted at ooo95.  

rel_b% Percentage Brother Nodes: the number of Direct 
Child Nodes of the father node(s), i.e., of immediate 
ancestor(s), of a specific node, as percentage of the number of 
nodes in the ontology. Note that the higher the value of the 
measure for a node, the greater its interestingness. For 
example, node oo250 (rel_b%=7.14%) is more interesting 
than node oo180 (rel_b%=3.57%) and node ooo90 
(rel_b%=3.57%), since it has more brother nodes having both 
oo175 and oo170 as father nodes. 

 

Fig. 1  A test ontology 

mdisbr Mean Distance of Brother Nodes: the mean 
distance of a specific node from its Brother Nodes. The 
distance of two nodes d(x,y) is calculated using the 
dissimilarity measure presented in [6]. The dissimilarity 
between any two attribute values is represented by the 
distance between the corresponding nodes of the tree structure 
as defined by the following formula:  

d(X,Y)=d1*d2*d3, where 

d1=1/fl(X,Y), 

d2=Average((l(X)-fl(X,Y))/max(p(X)),  

(l(Y)-fl(X,Y))/max(p(Y))) and 

d3=p(X,Y)/(max(p(X))+max(p(Y))), 

Where X and Y represent any two nodes, fl(X,Y) is the 
level of the nearest common father node of X and Y nodes, i.e. 
the level of the nearest common predecessor, l(X) is the level 
of node X, i.e. the depth of the node, max(p(X)) is the length 
of the maximum path starting from the root to a leaf and 
containing node X, p(X,Y) is the length of the directed path 
(number of edges) connecting X and Y. If there is not a path 

connecting X and Y then p(X,Y)=p(X,fl(X,Y))+p(Y,fl(X,Y)). 
Also, p(X,X)=0. mdisbr is calculated by the following 
algorithm: 

for each Brother Node i of node j 

 calculate d(X,Y) 

 set count += 1 

 set dsum += d(X,Y) 

return dsum/count 

Note that the lower is the value of the measure the greater 
is the interestingness. For example, node oo110 
(mdisbr=0.003) is more interesting than node oo610 
(mdisbr=0.0115), since its father node is located deeper in the 
ontology. 

nden(k) Network Density of range k: Network Density of 
range k of a specific node i is the number of nodes that are 
connected to or can be reached from i, via a path of length at 
most k, which does not include direction changes. We have 
implemented the calculation of the measure dynamically. 
Note that the higher is the value of the measure for a node, the 
greater is its interestingness. For example, for node oo610 
nden(2)=4, since there are 2 ancestor nodes (ooo40,ooo50) 
and two successor ones (oo650,oo700). Thus, it is more 
interesting than node oo110 (nden(2)=2). 

in% Percentage Incoming Paths: the indegree (din(i)) of a 
node i, i.e., the number of edges which have i as their end-
node, as percentage of the total incoming and outcoming 
paths, i.e., of the indegree plus outdegree of i. Note that the 
higher is the value of the measure for a node, the greater is its 
interestingness. For example, node ooo90 (in%=66.67%) is 
more interesting than node oo250 (in%=40%). 

out% Percentage Outcoming Paths: the outdegree (dout(i)) 
of a node i, i.e., the number of edges which have i as their 
start-node, as percentage of the total incoming and outcoming 
paths, i.e., of the indegree plus outdegree of i. Note that the 
higher is the value of the measure for a node, the greater is its 
interestingness. For example, node oo250 (out%=60%) is 
more interesting than node ooo90 (out%=33.33%). 

n_l(i)% Percentage Level distribution: Level distribution 
of a specific node i is the number of nodes belonging to the 
level of node i (l(i)), (i.e., the length of the maximum path 
(number of edges) from the root to node i), as percentage of 
the number of nodes in the ontology. Note that the higher is 
the value of the measure for a node, the greater is its 
interestingness. For example, there are 4 nodes on the same 
level with node oo100 (out%=14.3%) which is more 
interesting than node oo250 (out%=10.7%), since there are 3 
nodes on its level. 

We evaluated the proposed interestingness measures on 
both test and real ontologies (e.g. the Gene Ontology 
(http://www.geneontology.org/). To evaluate the proposed 
measures we used a node ranking with respect to their 
interestingness, defined by human experts, i.e. researchers of 
the “Institute for the Language Processing – ILSP” in Greece 
(www.ilsp.gr). After testing several test ontologies, we can 
conclude that rel_cD%, nden(k), out%, and n_l(i)% measures 
assigned interestingness in a way that reflects expert's first 
choices [47]. Moreover, both the n_l(i)% and the out% 
measures discovered additional interesting nodes. Such results 
were returned to the experts for additional comments and 
most of them were accepted as valid according to expert's 



International Journal of Information Engineering                                                                                                                                                 (IJIE) 

criteria. However, the rest measures have not provided 
successful results in a consistent manner. 

We have also investigated the integration of the different 
measures by introducing a unified model M = w1*rel _cD%, 
w2*rel_cI%,w3*rel_b%,w4*mdisbr, w5*nden(k), w6*in%, w7* 
out%, w8*n_l(i)%, as a function of them, where wi is a weight. 
Experimental tests show that a different unified model is 
needed for each different type of structure. In Table I, weights 
for four different types are shown resulting in about 95% 
accuracy w.r.t. expert, on the average. 

TABLE I 
WEIGHTS FOR DIFFERENT TYPES OF ONTOLOGIES 

Type w1 w2 w3 w4 w5 w6 w7 w8 

balanced 
tree 

8.5 6.8 10.2 13.0 13.0 33.6 5.5 9.4

unbalance
d tree 

3.3 7.7 11.0 13.6 5.8 49.5 5.7 3.3

sallow tree 18.2 17.5 1.1 13.9 14.5 27.8 5.9 1.1

balanced 
graph 

10.6 0.7 12.7 13.0 4.5 6.7 9.4 42.3

The notion of interesting parts in ontologies has already 
mentioned in the literature. It is mainly applied to web pages 
(e.g. [11]). It is also related to the problem of selecting 
ontologies under certain constraints [42] or to search engines 
[8]. Finally, the notion of interestingness is also applied to 
database schemata [3]. 

The most related to the proposed notion of interestingness 
is the notion of \importance of concepts and relations" which 
is based on a measure similar to out%, although it is a more 
sophisticated one [52]. Also, very closely related is the notion 
of “degree-of-interest” [15], where concepts of interest are 
detected by users based on their navigation activities. 

III. A NEW ONTOLOGY MAPPING THECHNIQUE BASED ON 

ASSOCIATION RULE MINING 

Ontology mapping aims at tackling structural and 
semantic heterogeneity and incompatibility by determining 
correspondences among elements of disparate ontologies. 
Note that structural heterogeneity has also been addressed to a 
great extent in the schema matching literature [41]. A 
mapping can be established either directly between two 
ontologies (alignment) or indirectly through mapping them 
onto a third reference ontology which both of them share as a 
common upper model (articulation). 

The work of mapping ontologies is performed mostly by 
hand, perhaps supported by a graphical user interface. Of 
course, performing ontology mapping manually is an 
extremely time-consuming and error-prone process. The 
ontology mapping techniques presented in the literature are 
usually based on syntactic and/or semantic heuristics. The 
latter have been studied in various scientific fields including 
machine learning, concept lattices, formal theories, databases 
and linguistics. In almost all of them user intervention is 
required, thus they are semi-automated. Usually, when an 
automatic decision is not possible, these techniques suggest 
possible correspondences, determine conflicts and propose 
solutions and actions. Then the user makes the final selection. 

We present a new ontology mapping technique (the 
ONARM technique) which, given two input ontologies, is 
able to map concepts in one ontology onto those in the other 
without any user intervention. The proposed technique 

exploits the structure of the input ontologies, i.e. the concept 
hierarchies, to determine the mapping. More specifically, it is 
based on association rule mining in order to extract 
association rules from these concept hierarchies. Association 
is one of the most popular data mining tasks. Association 
rules can be used to represent frequent patterns in data in the 
form of dependencies among concepts-attributes. The 
extracted association rules are considered as indirectly 
describing the concept relationships. 

A. Previous Approaches 

Recently, the number of ontology mapping techniques and 
systems has increased significantly (see http:// www. 
ontologymatching.org for the complete information on the 
topic). 

Ontology mapping techniques vary in input and output 
formats as well as in modes of user intervention. There has 
been little work on the comparative evaluation of ontology 
mapping techniques in the literature (e.g. [19,25,26]).  Next, 
we present related techniques focusing on the mode of user 
intervention. 

FCA-Merge [45] can semi-automatically create mappings 
among populated ontologies using a set of natural language 
documents, which have to be relevant to each of the input 
ontologies. Concepts which cannot be matched have to be 
treated manually (or the set of documents has to be expanded). 
During the last phase, the user manually, with guidance from 
FCA-Merge, constructs the merged ontology. This 
construction is semi-automatic as it requires background 
knowledge about the domain. The engineer has to resolve 
possible conflicts and duplicates, but there is automatic 
support from FCA-Merge in terms of a query/answering 
mechanism based on heuristics, which aims at guiding and 
focusing on the engineers attention on specific parts of the 
construction process. 

CAIMAN technique [28] employs information retrieval 
methods to apply to corpus of relevant documents that are 
assigned to each inputted ontology, so as to automatically 
create the mappings. For each concept in the first ontology, 
CAIMAN calculates a probability measure for any concept of 
the second ontology to be the corresponding node. The 
calculation of the probability measure is based on a simple 
cosine measure of the feature vectors of the two concepts. 

GLUE technique [12] employs machine learning methods 
to semi-automatically create semantic mappings between 
populated ontologies. At first, for each concept within 
ontology, GLUE finds the most similar concept in the other 
ontology. Similarity is defined as the joint probability 
distribution (e.g. Jaccard coefficient) of the concepts with 
respect to the instances of the ontologies. In order to calculate 
the similarity, Glue uses ensemble classifiers. Finally, GLUE 
attempts to exploit available domain constraints and general 
heuristics in order to improve mapping accuracy. User 
intervention is required when concepts cannot be matched (3-
34% of the concepts on several real-world domains). 

IF-Map technique [24] employs information flow theory 
to automatically create mappings between populated 
ontologies. IF-Map finds logic infomorphisms, if any, 
between the input ontologies and displays them in RDF 
format. Logic infomorphisms represent the information flow 
between separate components of a distributed system. 
Components are represented by local logics which describe 
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the different vocabularies, i.e. the dfferent instances (along 
with their different constrains) and their classifications to 
different types, used in each component. 

ONION technique [32] employs linguistic and structure-
based heuristics to determine the matches, i.e. the 
“articulation rules”, and finally to semi-automatically create 
the mappings. Mappings in articulation are established 
indirectly through mapping concepts of input ontologies with 
a shared view, which is created on purpose. Linguistic 
matches are based either on dictionaries like WordNet or on a 
corpus of documents related to the input ontologies. Structure-
based matches are searched after the linguistic matches. 
Finally, the suggested matches are validated by the user. Also, 
ONION includes a learning component in the system which 
takes advantage of users’ feedback to generate better matches 
in the future for similar ontologies. 

The mapping technique of the ITTalks system [39] 
employs either a statistical majority- based heuristic or a text 
classification algorithm in order to test all possible matches or 
to test user defined matches. According to the heuristic, if a 
concept in the first ontology matches with the majority of the 
children of a concept in the second ontology, then the latter 
concept is a better mapping than its children. The text 
classification algorithm is used to build a classifier for each 
concept in the ontologies. The classifier is based on a set of 
exemplar documents assigned exclusively to each concept. 

EER-CONCEPTOOL technique [10] employs a 
Description Logic in order to build an articulation view for 
mapping the input ontologies. It performs a number of steps 
of formal concept and linguistic analysis in order to suggest 
the user possible correspondences. However, in each step the 
user is ultimately responsible for accepting or rejecting each 
of these suggestions for concept, attribute or identifier 
correspondences. Moreover, the user can introduce more 
complex correspondences between unions or intersections of 
concepts in each ontology, based on the ones proposed by the 
system. 

MAFRA technique [30] employs semantic similarity 
measure and heuristics based on the similarity of two concepts 
to establish a matching. It uses a semantic similarity measure 
which is based on hypothesis that the more the information 
two concepts share in common, the more similar they are. The 
information shared by two concepts is indicated by the 
information content of their most specific common subsumer. 
After similarities have been established the “semantic 
bridging” heuristic phase is responsible for i) establishing 
correspondence between concepts, attributes and relations, ii) 
endowing the mapping with bridges for concepts that do not 
have a specific counterpart target concept. 

S-MATCH technique [18] concentrates on semantic 
matching and it employs linguistic and logic based heuristics 
to automatically create the strongest semantic relation 
between every pair of concepts in the input ontologies. It 
distinguishes between a concept related to a label (what the 
label means to the world) and a concept related to a node 
(what means the concepts of labels assigned to the nodes 
above it). Thus, in the preprocessing phase all labels are 
translated into an internal language, which is based on 
propositional logic after lexical processing. Then, it computes 
relations between every pair of concepts of labels (CL matrix) 
based on two sources of a priori knowledge: the one extracted 
from word similarities by matchers using string manipulations 

and that extracted from WordNet by matchers using the 
“senses”. Then, it computes relations between every pair of 
concepts of nodes (CN matrix) using CL by a satisfiability 
problem solver for propositional logic. 

OLA technique [16] employs semantic similarity between 
concepts, which is based on the similarities of concepts 
(contributor pairs) related to those are going to be checked 
(anchor pair). It uses different semantic similarity measures to 
calculate the similarity of a pair. To one of the eight supported 
elements of an ontology, i.e. categories (e.g. class, object, 
relation, etc.), a different similarity measure is defined. All of 
them form the final similarity by using weights. 

There are also some techniques that aim at guiding the 
user to create mappings. PROMPT [34], (as well as SMART 
[33] and PROMPTDIFF [35]), employs linguistic similarity 
and heuristics to guide the user in the creation of the mapping. 
Firstly PROMPT creates an initial list of linguistic similarity 
matches based on class names. Then, the user triggers an 
operation which either has been suggested by PROMPT or by 
using an ontology-editing environment. Then, PROMPT 
performs the operation and it automatically executes 
additional changes, generates a list of suggestions, and 
determines conflicts. CHIMAERA [31] is a similar interactive 
browser-based editing, merging, and diagnosis tool for the 
Ontolingua editor. As in PROMPT, the user is in charge of 
making decisions that will affect the mapping process. 
CHIMAERA analyzes the ontologies which are to be merged, 
and if linguistic matches are found, the merge is done 
automatically; otherwise the user is prompted for further 
action. 

Moreover, there are techniques which are based on the 
combination of different mapping processes (e.g. [2,21]), 
which exhibit remarkable results in terms of accuracy 
(http://oaei.ontologymatching.org). Also, there are techniques 
that could potentially be used in ontology mapping like 
translators (e.g. OntoMorph [9]) or integrators (e.g. 20). 
Finally, a similar problem is that of schema matching in 
databases. 

B. The Proposed Ontology Mapping Technique 

The key idea of the proposed ontology mapping technique 
is to establish a similarity between two concepts of the input 
ontologies, which is based on their location in the ontology 
structures. The location of a node, which represents a concept 
within an ontology structure, determines its neighbour 
concepts. We consider that the meaning of a concept is also 
characterized by the meaning of its neighbour concepts, as the 
creator of the ontology indirectly determined by defining the 
structure of the ontology.  

Note that structural mapping alone is not sufficient for 
ontology mapping. The meaning of the concept is also 
characterized by a linguistic analysis of the concept with 
respect to a large-scale dictionary like WordNet, to a corpus 
of documents, to manual rules, to lexical distances, etc. The 
proposed technique accepts both of these sources of 
background knowledge in order to establish a similarity 
measure. However, the latter is dominated by the location of a 
concept within the ontology. 

Graph matching techniques could be used in order to 
examine the similarity of the location of two input concepts. 
Since we concentrate on efficiency, we rejected such 
techniques because of their time complexity (for instance time 
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complexity of graph isomorphism is exponential). The 
proposed technique considers each path of the ontology 
structure as a source of background knowledge. It applies 
association rule mining in order to determine the predominant 
neighbour concepts of an input concept. 

In this paper, we consider association rule mining which is 
known as the market basket problem, and in which concepts-
attributes represent products and the initial database, is a set 
of customer purchases (transactions). This particular problem 
is well-studied in data mining. We consider association rules 
an analog to the form “90% of the customers that purchase 
product x also purchase product y” (Boolean association rules) 
(e.g [1,7,38]). Formally, an association rule is a rule of the 
form XY, where X,Y named respectively antecedent and 
consequent of the rule and X,Y I={i1,i2, ... ,ij}, such that 
XY= and ik, 1kj is an item in the transaction database D. 
The informative power (named interestingness) of each 
association rule is measured by two indexes: the Support that 
measures the proportion of transactions in D containing both 
X and Y and the Confidence that measures the conditional 
probability of the consequent given the antecedent. 

More specifically, the proposed technique considers each 
path of the ontology structure as a transaction. Then, for each 
inputted ontology, it applies association rule mining to the set 
of its transactions. We consider that the extracted association 
rules determine the predominant neighbor concepts of every 
input concept. Thus, the similarity of these association rules 
defines the location-based similarity of the concepts. 

Linguistic analysis is also taken into consideration. 
However, it is used to increase or decrease the obtained 
location-based similarity (see  parameter below). In that 
sense, any heuristic for linguistic analysis proposed in the 
literature can be used. Also, aggregating the results of such 
heuristics could also be used, as for example in [13,14]. In 
this paper, we adopt a naive such heuristic: we examine 
identity of labels of concepts, while we use a common 
vocabulary for both ontologies. Obviously, more advanced 
heuristics would increase the overall accuracy. 

The proposed technique can be applied to ontology 
structures forming a directed acyclic graph. Thus, it supports 
multiple inheritance. The required formal definition of input 
ontologies contains two core items shared by most formal 
definitions of an ontology in the literature: concepts and a 
hierarchical IS-A relation. Thus, we define a core ontology as: 
a pair G=(C,r), where C is a set of concepts and r is a partial 
order on C, i.e. a binary relation rCXC which is reflexive, 
transitive, and antisymmetric.  

More specifically, the proposed technique accepts two 
ontologies as input. Any ontology editor can be used to create 
them (we used the Protégé knowledge-modeling environment). 
During the first step the input ontologies are transformed to 
RDF and RDFS formats. Obviously, any ontologies pre-
described in RDF(s) can be used. Then, the Java-Jena API is 
used. Jena is a Java implementation of an extension to the 
semantic web by means of a respective API. This offers the 
capability of getting the complete description of the input 
ontology in terms of its structural elements (paths, current 
nodes, successor nodes, parent nodes, siblings and leaf nodes). 
In order to apply the APRIORI association rule mining 
algorithm [1], nodes must be topologically numbered. Thus, 
the second step is to generate a numbered node structure, of 
the same structure as the ontology under examination but 

numbered with integer numbers that will undergo Breadth 
First Search (BFS), such that, integers are horizontally 
incremented and assigned and therefore guaranteeing this way, 
that any node Ni is numbered with an integer k such that k>m, 
where m is the integer which has been assigned to its parent 
node M (this relation holds true for any parent and child nodes 
within the input ontology). In this way, nodes at deeper levels 
are mapped with higher number values. 

After numbering the Ontology, a hash table is built that 
includes all the nodes of the ontology with their respective 
integers. Then, to extract all the possible paths, with the 
objective to quick reach and examine priority terminal nodes 
its paths, a Depth First Search (DFS) is run, that provides all 
possible paths number-named in a list type format. The 
methodology has been designed in such a way that permits 
multiple inheritance (and therefore has multiple parents) in 
the following way and under the definition: L(i) is the level of 
node i and L(i)=max(L(l1),L(l2), ... ,L(ln)), where l1,l2, ... ,ln are 
parent nodes of node i. 

To resolve the above problem during the numbering 
process, the integers that are assigned to the nodes are non-
continuous but they retain the necessary property needed for 
the APRIORI algorithm, such as: for any two nodes I and J, 
order (J)>order (I), if node J is a parent node of I. 

This step involves the extraction of all root-to-leaf paths 
available in the ontology schema by means of a recursive 
method. Furthermore, a list of all leaf nodes is created. Then, 
for a predefined set of minimum support and confidence 
values, APRIORI algorithm is applied to both input 
ontologies (e.g. G1 and G2). The result is a set of rules of the 
following type: 

1: [2,7], 45, 20 
2: [1, 7, 4], 30, 70 
3: [1, 3, 6], 45, 20 
4: [1, 3, 4], 30, 70 
… 
where, the integers above denote number-named nodes of 

the ontology. Each pair of (c,s) produces such one respective 
set of rules R(G1), R(G2). Following, the above rule set is 
back translated and represented with the original node names, 
providing this way R’(G1), R’(G2) of rules. 

The proposed technique generates an [nxm] “significance 
matrix” containing the significance in mapping every node of 
G1=(C1,r1) with every one of G2=(C2,r2). Note that G2 is 
mapped against G1 and not vice versa, considering G1 as our 
reference ontology. The significance in mapping XC1 to 
YC2 is calculated based on the support measure of the 
association rules having X and Y as left part. For instance, 
consider the following rules for X and Y: 

X(B,s1,c1), 

X(BC,s2,c2),  

Y(B,s3,c3), 

Y(AC,s4,c4) 

For each of the four pairs of rules, one for X and the other 
for Y , the measures K and Kt, indicating the significance, are 
computed by the following procedure: 

K=0, if |sX-sY|>, 

 where α  a user defined threshold. 
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KAverage(sX,sY)**w, 

where  >1 if X or Y or both are instances, 

=1 otherwise, 

w=percentage of similarity of right parts. 

Kt=K*, 
where >1 if XY, i.e. the two nodes are identical after a 

linguistic analysis, 

=1 otherwise. 

Thus, for the pair: 

X(B,s1,c1),Y(B,s3,c3)K=Average(s1,s3)*1*1, while 
for the pair: 

X(B,s1,c1),Y(AC,s4,c4)K=Average(s1,s4)*1*0 and 
for the pair: 

X(BC,s2,c2),Y(AC,s4,c4)K=Average(s2,s4)*1*0.5. 

Considering that nodes of reference ontology G1 are listed 
in rows and those of G2 are listed in columns, the 
“significance matrix” is filled as follows: 

for every cell (i,j) in the n x m matrix 

calculate pK,  pair p of rules, one for i and the other for 
j 

calculate Kt 

fill cell (i,j) with Kt 

repeat 

find the cell (i,j) filled with the first maximal Kt in the 
matrix 

map i to j 

delete row i and column j 

until there is not any row left 

For some minimum support and confidence (e.g. 
(s,c)=(25,5)), the proposed technique extracts rules from two 
ontologies (e.g. G1 and G2) and builds the significance matrix. 
Finally, it provides final mappings along with their 
significance, e.g.: 

[G1] : ooo50  [G2] : ooo50; 75.0 

We performed extensive empirical tests (see [46]) aiming 
at examining the accuracy of the proposed technique using 
both test and real ontologies. High accuracy is achieved in 
most of the cases (up to 100%). High accuracy is also 
achieved on specific OAEI-2008benchmarks 
(http://oaei.ontologymatching.org/). For instance, 100% 
accuracy is achieved by testing the ontology 101 of OAEI-
2008 against itself since all the 93 nodes were mapped 
correctly. Also, 100% accuracy is achieved by testing the 
ontology 101 against ontology 228, since all the 93 common 
nodes were mapped correctly. 

The empirical tests show that minimum support and 
confidence values are not critical. The only requirement is to 
set low values. Theoretically this is true because of the small 
number of paths of an ontology. For instances, the results on 
the OAEI- 2008 benchmarks mentioned in the previous 
paragraph were performed setting both minimum support and 
confidence to 5. 

C. Efficiency in Ontology Mapping 

The time complexities presented in the following were 
considered for the worst case.  

In the proposed technique, the extraction of association 
rules is performed separately for each ontology, which is 
O(|Gi|*|Ck|), where |Ck| is the number of all candidate itemsets 
checked. According to [1], the complexity of locating the 
itemsets of size k is O(k*log(|Gi|/k)) (however in random 
databases there are only a few large itemsets). In the proposed 
technique the maximum size is d, the depth of the ontology. 
Thus, latter the complexity is: O(d

j=1 j*log(|Gi|/j)) which is 
O(d2log(|Gi|)). Thus, the overall complexity of extraction is 
O(d2log(|Gi|)). The used similarity matrix is obtained in 
O(|G1|*|G2|). 

In FCA-Merge, the problem of computing concept lattices 
has exponential worst case complexity. In practical cases, the 
“Next Closure” algorithm for computing concept lattices is 
O(B(K)*|D|*(|G1|+|G2|)

2), while the complexity is 
O(B(K)*(|D|+(|G1|+|G2|))*|D|) for the algorithm of Nourine 
and Raynaud. Also, note that the time complexity of 
TITANIC algorithm is between them. 

CAIMAN technique requires a time-consuming phase in 
order to build the feature vector of each concept in the input 
ontologies. The calculation of a similarity matrix for any two 
concepts, based on the feature vectors, is O(|G1|*|G2|). 

GLUE is a time consuming technique. For every pair of 
concepts (A,B) AG1, BG2 it computes their similarity by 
applying the Naive Bayesian classifier (assuming that all the 
base learners an trained in parallel), which is 
O(|G1|*|G2|*(|n1|+|n2|)), where n1, n2 are the instances of G1, 
G2 respectively. This is because the complexity of Naive 
Bayesian classifier is linear to the training set. Also, the 
complexity of "relaxation labeling", which depends on the 
compatibility coefficients, is linear to the number of labels, 
thus it is O(|G1|+|G2|).Note also, that the convergence 
properties of "relaxation labeling"are not yet well understood 
and it is liable to converge into a local maxima. 

IF-Map has an exponential time complexity and thus it 
cannot be applied to large-scale ontologies. This is because it 
must automatically generate all possible mappings among 
ontologies. Thus, the search space is exponential and IF-Map 
tries to reduce it by using the instances. By using the 
constraint, a mapping has to respect concept hierarchy. 

In ONION technique, linguistic matches which are based 
on dictionaries require an exhaustive search in extremely 
large-scale dictionaries with many hundreds and thousands of 
concepts, like WordNet with 106 concepts. Thus, a word 
similarity construction based on WordNet is 
O(|G1|*|G2|*|GWordNet|). Linguistic matches based on a corpus 
of documents require a time-consuming preprocessing in 
order to build the context vector of each concept in the input 
ontologies. The calculation of a similarity matrix for any two 
concepts based on the context vectors, is O(|G1|*|G2|). Also, 
the graph isomorphism is a NP problem. 

The mapping technique of the ITTalks system requires 
every pair of concepts either to test their children or to 
classify the assigned concept exemplar documents. Thus, its 
complexity is O(|G1|*|G2|*D*O(classify)), where D is the 
mean number of exemplar documents assigned to a concept 
and O(classify) and is the complexity of the classification of a 
document, a rather complex process. 

In EER-CONCEPTOOL technique different inference 
mechanisms on the Description Logic are used in order that 
the formal concept and linguistic analysis can be performed. 
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Although ontologies are represented using the Description 
Logic, without loss of generality, a formal concept analysis is 
reduced to traversals of ontology structures, for every concept 
of the articulation ontology Ga, which is O(|G1|+|G2|*|Ga|). 
Moreover, linguistic analysis requires every concept in the 
input ontologies, a search in the WordNet, an extremely large-
scale dictionary with 106 concepts, which is O (|G1|+|G2|*| 
GWordNet|). 

In MAFRA technique the time complexity of the adopted 
semantic similarity measure for two concepts is O(d), where d 
is the depth of the ontology. Thus, the time complexity of 
calculating a similarity matrix is O(|G1|*|G2|*d). The semantic 
bridging phase is reduced to access the similarity matrix and 
to perform ontology traversals, which is not significantly 
more time-consuming than the calculation of the similarity 
matrix. 

In S-MATCH technique the most time consuming phase is 
the computation of the CN matrix. For every pair of concepts 
of nodes a satisfiability problem solver must be applied. The 
satisfiability problem is a known NP-complete problem 
requiring an exponential time. The overall complexity of this 
phase is O(|G1|*|G2|*2V), where V is the number of logical 
variables in the propositions represented the background 
knowledge. 

In OLA technique, for each pair of concepts an iterative 
process is executed in order to calculate similarity. 
Complexity is increased if there are recursive dependencies 
(two pairs of nodes are each other’s contributor). In general, a 
non- linear problem must be solved in order to calculate 
similarity. 

Finally, note that recently there is a concern on efficiency 
of the proposed ontology mapping techniques in the literature. 
For instance the work presented in [13] tries to reduce the 
search space by introducing certain strategies to select the pair 
of concepts checking for mapping. Thus the time complexity 
is reduced to O((|G1|+|G2|)*log(|G1|+|G2|)). 

D. System Architecture 

A system is implemented, the Concept Net, in order to 
evaluate the proposed methodology in practical applications. 
The general system architecture is composed by two major 
modules. The first module, the front-end module, runs on 
user's personal computing device. Note that the system can 
run on mobile devices such as Personal Digital Assistants and 
mobile phones. The second module, the back-end module, 
implements all the logic and algorithms and it runs on the 
server side. These two modules communicate to each other 
via web services which have been developed for this purpose. 

The front-end module (Fig. 2) is composed by three main 
components: the “Graphical User Interface”, the “Web 
Services Interfaces (WS IFCs)” and the “Operating System 
Utility”. 

The “Graphical User Interface” component consists of a 
set of forms via with the end user interacts with the system. It 
includes all the forms that the user uses to interact with the 
system, as well as the forms that compose the GUI for the 
developed ontology editor. The ontology editor is a light 
graph editor that allows the end user to visualize all the 
concepts that are relevant to him, as well as their relations, in 
a form of a graph. This graph is stored locally to this module. 

The “Web Services Interfaces (WS IFCs)” component 
consists of service calls, which are responsible for all the 

communication between the client front-end device and the 
back-end system. Such kind of data is low level data, like the 
physical location where the main server is located in terms of 
IP, port, function calls, etc. This component can send and 
receive specific user information, like authentication 
information, graph to be processed, reception of similar nodes 
from other nodes from other users in the Concept Net, etc. 

The “Operating System Utility” component consists of 
low level utilities that organize functionality dealing with 
access to file system. This functionality incorporates storage 
and retrieval of users’ credentials, personal infomation 
regarding to the system accessibility, storage of 
graphs/ontologies that the user creates and graphs which are 
received from the back-end system. All the communication 
between the client system in the front-end device and the 
server based back-end system is achieved via this set of web 
services calls only. 

The back-end module (Fig. 3) is currently implemented 
using the Java Programming Language. It is composed by the 
“Web Services Interfaces (IFC)”, the “Data Access Layer”, 
the “System Logic & Intelligence Module", the “Knowledge 
Service”, the “Database” and the “Operating System & File 
System Access Layer”. 

The “Web Services Interfaces (IFC)” component is 
responsible for all the communication between the users' 
client devices and the back-end system. 

The “Data Access Layer” incorporates all the functionality 
needed to send queries to system database as well as to 
receive information from it, during the system operation. This 
information is relevant to authentication as well as to user's 
knowledge profile. 

 
Fig. 2 The front-end module 

 

Fig. 3 The back-end module 
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The “System Logic & Intelligence Module” incorporates 
all the functionality dealing with the main operation of the 
proposed methodology. It includes submodules that 
implement the following functions: 

Graph Analysis. This sub-module accepts an ontology in 
the form of graph and performs operations to analyze it in 
terms of paths, nodes, leaf nodes, parent and children nodes of 
every node. This functionality is achieved byusing the HP 
Jena API for ontology querying, in RDF/RDFs graph formats. 

Apriori: Association Rule Mining Algorithm. This sub-
module accepts as input all the possible paths and outputs the 
paths with the most significant associations among their nodes. 

Concept Matching. This sub module inputs two sets of 
paths, outputs the most "interesting" ones to match each other. 

Ontology Alignment. Based on the above, this sub-module 
performs the actual implementation and integration of the 
concepts into the user's graph. 

The “Knowledge Service” component implements a set of 
function calls. When it is called properly from the “Web 
Services Interfaces” component, it performs the respective 
task. The function calls implemented in “Knowledge Service” 
are: Echo, GetConfiguration, LoginUser, UpdateInLineStatus, 
GetConceptList, GetUserByStatus, UploadUserGraph, 
RegisterUser, SynchronizeGraphs and GetUserGraph. 

The “Database” stores all the system information, users' 
knowledge profiles, concepts, etc. Finally, the “Operating 
System & File System Access Layer” implements 
functionality for accessing the Operating System, so that the 
overall system can be easily transferred to a variety of 
Operating Systems. 

The Concept Net system has been implemented for proof 
of concept purposes, as a full working prototype. It is applied 
for evaluation purposed to different domains. For instance, it 
is applied to the tourism domain [48]. The objective was to 
recognize among two Concept Net users (tourists), identify 
their personal ontology graphs, and analyze them by using the 
proposed methodology and finally exchange the concepts that 
interest each user. 

IV. CONCLUSIONS 

We present a system for detecting and then exchanging 
interesting parts of ontologies. To detect the interesting parts 
of ontologies, we define and evaluate a number of different 
measures of interestingness of parts of ontologies, in which 
each one represents different semantics of interestingness. 

To exchange the interesting parts of ontologies, we 
propose a new ontology mapping technique, which exploits a 
structural similarity measure. Since it is based on the structure 
of ontologies, it can handle both metadata and instance 
heterogeneity. Moreover, it can easily be included in systems 
based on combination of mapping techniques, especially 
when only a few techniques are there for structural similarity 
([13,16,22]). Also, it exhibits a low time complexity with 
respect to the related approaches. 
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